NNLIBC: Neural Networks in C for WebAssembly

June 1, 2022


Overview

nnlibc: This is a Pytorch-like neural network library written in C. Across the library, vectors are treated as 1 x n matrices. A wrapper over the GSL library is written in matrix.c with invoking syntax similar to Numpy. Sample examples are available in models directory.

nnlibc can be compiled to WebAssembly and run on the SilverLineFramework Linux Runtime or the Wasmer runtime.

GNU Scientific Library Wrapper

The GNU Scientific Library is used for matrix and vector operations and a matrix.c wrapper can be invoked to perform those operations.

Compiling GSL to C

Please follow the steps given HERE.

Compiling GSL to WASM

Install Emscripten.

Download the 'Current Stable Version' from the GSL webpage.

In the downloaded GSL folder, say gsl-2.7.1, run the following commands

emconfigure ./configure
emmake make LDFLAGS=-all-static
sudo make install

GSL will be installed at /opt/gsl-2.7.1 with WASM executables.

Compiling the Neural Network Library in C

gcc -Wall *.c -lm -lgsl -lgslcblas -o Output

Compiling the Neural Network Library to WASM

emcc *.c -o Output.wasm -I/opt/gsl-2.7.1/include -L/opt/gsl-2.7.1/lib -lgsl -lm -lgslcblas -lc -s STANDALONE_WASM

Running WASM files

  • Using Wasmer

    Install Wasmer using the following command.

curl https://get.wasmer.io -sSfL | sh

Run Wasm output file

wasmer Output.wasm

Running the Wasm output file

Open 4 terminal windows.

Terminal 0: MQTT

mosquitto

Terminal 1: Orchestrator

cd orchestrator/arts-main
make run
cd orchestrator/arts-main
make run

Terminal 2: Linux Runtime

In this example, 'dir' is at '/home/ritzdevp/nnlibc'; replace it with the path of the neural network library.
./runtime-linux/runtime --host=localhost:1883 --name=test --dir=/home/ritzdevp/nnlibc \
     --appdir=/home/ritzdevp/nnlibc

Terminal 3: Run

python3 libsilverline/run.py --path Output.wasm --runtime test
The output will be visible in Terminal 2.

Using the Neural Network Library

Setting up GSL Random Number Generator

Referece: Random Number Distribtion

const gsl_rng_type * T;
gsl_rng * rng;
gsl_rng_env_setup();
T = gsl_rng_default;
rng = gsl_rng_alloc(T);

Loading Data

This library reads the training and testing data from .dat files. The np2dat.py file can be used to convert a numpy file to a .dat file which can be read into a gsl_matrix* by calling the load_data() function. Here is an example, Consider that you have a numpy file in data/mnist_mini/x_train.npy. Convert this numpy file to .dat using the following command

python3 np2dat.py data/mnist_mini/x_train.npy

The file data/mnist_mini/x_train.dat should be visible now. The data can be loaded into a gsl_matrix as shown below.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "data.h"
int main(){
int train_len = 2000;
    //Note: 28x28 image is already flattened to 784 in the data
    gsl_matrix* x_train = load_data("data/mnist_mini/x_train.dat", train_len, 784);
    x_print_shape(x_train);
    return  0;
}

The output will be

shape = (2000, 784)

Creating the network

MLP with 2 hidden layers and one output layer, hence 3 total layers. The first hidden layer has 784 inputs that are connected to 512 neurons. The layer index for this layer is 0. Then, sigmoid activation is applied at layer index 1. Similarly, for the second hidden layer.

Xnet* mynet = Xnet_init(3);

//Hidden Layer 1
Linear* lin_layer1 = linear_init(784,512,0, rng);
xnet_add(mynet, lin_layer1);
Activation* act1 = Act_init("sigmoid", 1);
xnet_add(mynet, act1);

//Hidden Layer 2
Linear* lin_layer2 = linear_init(512,512,2, rng);
xnet_add(mynet, lin_layer2);
Activation* act2 = Act_init("sigmoid", 3);
xnet_add(mynet, act2);

//Output Layer
Linear* lin_layer3 = linear_init(512,10,4, rng);
xnet_add(mynet, lin_layer3);
Activation* act3 = Act_init("identity", 5);
xnet_add(mynet, act3);

Training

The loop runs for 3 epochs, over 1000 data points. Gradients are zeroed out for the new iteration. The output is generated by a forward pass in the network followed by a backward pass. The weights are updated in each iteration.

int num_epochs = 3;
for (int epoch = 0; epoch < num_epochs; epoch++){
    for (int i = 0; i < 1000; i++){
        net_zero_grad(mynet);
        gsl_matrix* input = get_row(x_train, i);
        gsl_matrix* output = net_forward(input, mynet);
        gsl_matrix* desired = get_row(y_train, i);
        net_backward(desired, mynet);
        net_step(mynet, 0.01); //lr=0.01
    }
    printf("Epoch %d done.\n", epoch);
}

Model Examples

  • XOR Experiment

    alt text
    Copy the contents in models/xor.c and paste in playground.c Compile and run The output should be

      XOR MLP
      Epoch 0 Loss 0.696.
      Epoch 100 Loss 0.527.
      Epoch 200 Loss 0.352.
      Epoch 300 Loss 0.334.
      Epoch 400 Loss 0.327.
    
      0.000000 0.000000 
      Out = 0
    
      0.000000 1.000000 
      Out = 1
    
      1.000000 0.000000 
      Out = 1
    
      1.000000 1.000000 
      Out = 0
    
  • MNIST Experiment

    Copy the contents in models/mnist.c and paste in playground.c Compile and run. The output should be

      shape = (2000, 784)
      shape = (2000, 10)
      shape = (100, 784)
      shape = (100, 10)
      Designing the model
      Epoch 0 done.
      Epoch 1 done.
      Epoch 2 done.
      Accuracy Percentage = 65.000